3.351 \(\int \cos ^{\frac{7}{2}}(c+d x) (a+a \sec (c+d x)) \, dx\)

Optimal. Leaf size=111 \[ \frac{10 a \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{21 d}+\frac{6 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{7 d}+\frac{2 a \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{5 d}+\frac{10 a \sin (c+d x) \sqrt{\cos (c+d x)}}{21 d} \]

[Out]

(6*a*EllipticE[(c + d*x)/2, 2])/(5*d) + (10*a*EllipticF[(c + d*x)/2, 2])/(21*d) + (10*a*Sqrt[Cos[c + d*x]]*Sin
[c + d*x])/(21*d) + (2*a*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d) + (2*a*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(7*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0902441, antiderivative size = 111, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {4225, 2748, 2635, 2639, 2641} \[ \frac{10 a F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d}+\frac{6 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{7 d}+\frac{2 a \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{5 d}+\frac{10 a \sin (c+d x) \sqrt{\cos (c+d x)}}{21 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x]),x]

[Out]

(6*a*EllipticE[(c + d*x)/2, 2])/(5*d) + (10*a*EllipticF[(c + d*x)/2, 2])/(21*d) + (10*a*Sqrt[Cos[c + d*x]]*Sin
[c + d*x])/(21*d) + (2*a*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d) + (2*a*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(7*d)

Rule 4225

Int[(csc[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_), x_Symbol] :> Int[(ActivateTrig[u]*(B + A*Sin[a + b*x]))/Sin[a
 + b*x], x] /; FreeQ[{a, b, A, B}, x] && KnownSineIntegrandQ[u, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \cos ^{\frac{7}{2}}(c+d x) (a+a \sec (c+d x)) \, dx &=\int \cos ^{\frac{5}{2}}(c+d x) (a+a \cos (c+d x)) \, dx\\ &=a \int \cos ^{\frac{5}{2}}(c+d x) \, dx+a \int \cos ^{\frac{7}{2}}(c+d x) \, dx\\ &=\frac{2 a \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{2 a \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac{1}{5} (3 a) \int \sqrt{\cos (c+d x)} \, dx+\frac{1}{7} (5 a) \int \cos ^{\frac{3}{2}}(c+d x) \, dx\\ &=\frac{6 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{10 a \sqrt{\cos (c+d x)} \sin (c+d x)}{21 d}+\frac{2 a \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{2 a \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac{1}{21} (5 a) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{6 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{10 a F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d}+\frac{10 a \sqrt{\cos (c+d x)} \sin (c+d x)}{21 d}+\frac{2 a \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{2 a \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d}\\ \end{align*}

Mathematica [C]  time = 6.17138, size = 490, normalized size = 4.41 \[ a \left (-\frac{3 \csc (c) (\cos (c+d x)+1) \sec ^2\left (\frac{c}{2}+\frac{d x}{2}\right ) \left (\frac{\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right ) \text{HypergeometricPFQ}\left (\left \{-\frac{1}{2},-\frac{1}{4}\right \},\left \{\frac{3}{4}\right \},\cos ^2\left (\tan ^{-1}(\tan (c))+d x\right )\right )}{\sqrt{\tan ^2(c)+1} \sqrt{1-\cos \left (\tan ^{-1}(\tan (c))+d x\right )} \sqrt{\cos \left (\tan ^{-1}(\tan (c))+d x\right )+1} \sqrt{\cos (c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}-\frac{\frac{\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right )}{\sqrt{\tan ^2(c)+1}}+\frac{2 \cos ^2(c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}{\sin ^2(c)+\cos ^2(c)}}{\sqrt{\cos (c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}\right )}{10 d}-\frac{5 \csc (c) (\cos (c+d x)+1) \sec ^2\left (\frac{c}{2}+\frac{d x}{2}\right ) \sqrt{1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin (c) \left (-\sqrt{\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \text{HypergeometricPFQ}\left (\left \{\frac{1}{4},\frac{1}{2}\right \},\left \{\frac{5}{4}\right \},\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{21 d \sqrt{\cot ^2(c)+1}}+\sqrt{\cos (c+d x)} (\cos (c+d x)+1) \sec ^2\left (\frac{c}{2}+\frac{d x}{2}\right ) \left (\frac{23 \sin (c) \cos (d x)}{84 d}+\frac{\sin (2 c) \cos (2 d x)}{10 d}+\frac{\sin (3 c) \cos (3 d x)}{28 d}+\frac{23 \cos (c) \sin (d x)}{84 d}+\frac{\cos (2 c) \sin (2 d x)}{10 d}+\frac{\cos (3 c) \sin (3 d x)}{28 d}-\frac{3 \cot (c)}{5 d}\right )\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x]),x]

[Out]

a*(Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sec[c/2 + (d*x)/2]^2*((-3*Cot[c])/(5*d) + (23*Cos[d*x]*Sin[c])/(84*d)
 + (Cos[2*d*x]*Sin[2*c])/(10*d) + (Cos[3*d*x]*Sin[3*c])/(28*d) + (23*Cos[c]*Sin[d*x])/(84*d) + (Cos[2*c]*Sin[2
*d*x])/(10*d) + (Cos[3*c]*Sin[3*d*x])/(28*d)) - (5*(1 + Cos[c + d*x])*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/
4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[
c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(21*d*
Sqrt[1 + Cot[c]^2]) - (3*(1 + Cos[c + d*x])*Csc[c]*Sec[c/2 + (d*x)/2]^2*((HypergeometricPFQ[{-1/2, -1/4}, {3/4
}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1
+ Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - (
(Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^
2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(10*d))

________________________________________________________________________________________

Maple [A]  time = 1.414, size = 270, normalized size = 2.4 \begin{align*} -{\frac{2\,a}{105\,d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 240\,\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{8}-528\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}\cos \left ( 1/2\,dx+c/2 \right ) +448\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) +25\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-63\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-122\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c)),x)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(240*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8-
528*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+448*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+25*EllipticF(cos(1/2*d
*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)-63*EllipticE(cos(1/2*d*x+1/2*
c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)-122*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x
+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1
/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)*cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a \cos \left (d x + c\right )^{3} \sec \left (d x + c\right ) + a \cos \left (d x + c\right )^{3}\right )} \sqrt{\cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((a*cos(d*x + c)^3*sec(d*x + c) + a*cos(d*x + c)^3)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(7/2)*(a+a*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)*cos(d*x + c)^(7/2), x)